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center. Since the exacmess of asymptotic formulas (2.1) is of the order of 0 (n’i), 
where &_i = (y - 1) / (y d) the accuracy of formulas (2.4) is of the order of o(rsri). 

The Euler equation (2.7) is derived from (I. 1) and (2.4) with an accuracy of the order 

of 0 (fScE), where 5~ = (2~ + d - 2) / (y d). There are no further simplifications 

in the kinetic mode. Hence, Eqs. (2.10) and (2.11) define the hf -mode in the neighbor- 

hood of the center with an accuracy of the order of 0 (t-“K), where hK = min (6,<,, 

I;E8Kb 

In the Planck-mode Eq. (2.10) is approximated by (3.7) with an accuracy of the order 
of 0 (tS5 In t-s’). Hence solution (3.8) defines such flow with an accuracy of the order 

of 
C, {min [t-‘Pii, t-‘PCE, tb(&P) In t-W”P) 1) 

The reduction of (2.10) to (3.11) is achieved in the K-mode with an error of the 

order of 0 (t-“s~). The resulting error of determination of such flows is of the order of 

0 (t-“R), LB = min [6n5i, 6*&r, 2 &(6n)l 
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We propose a method of obtaining exact solutions of certain boundary value prob- 

lems for hyperbolic systems of quasilinear equations of first order with two un- 
knowns. The method utilizes special series. As an example, we solve the prob- 

lem of motion of a plane, cylindrical or spherical piston in a gas with dis~ibuted 
density. 

2. Let us consider the following system of equations: 

(1.1) 

U = {Z&(X, t)}, A (Z, U) - {Uij(x, U)}, B t2, U) = ibijtZ, ‘11 

c (z, U) - {c&, U)}, i, i == 1, . . . . ttz 
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Let U”(x) = {Ul”(Z), ..‘) ~~“(2)) be the analytic solution of system (1.1). We as- 
sume that aij(X, U), bii(~, U) and c~(x, U) (i, j -: 1, . . . . m) are functions ana- 
lytic in the neighborho~ of the point &I = {x = 0, U = U”},,and that the solution 

U"(s) has a corresponding characteristic of system (1.1) which can always be written 
in the form 

9 (z, t) = t + yr (2) == 0 (1.8 

We also assume that 0 < 1 cpx’ 1 < w, Y (0) -= O,zand that the following (m- 1) th 
order determinant is not zero in the neighborhood of M : 

det {aij + bijcpi} # 0 i, i -= 2, . . . . m 

We seek a solution of system (1.1) with the following conditions: 

where %k(k = 0, . . . . 30) are specified constants. 
The solution is sought in the neighborhood of the point (2 == 0, t = 0, cp = 0) for 

t > c and 9 > 0. 
Ludwig in [I] gave a method of solving the Cauchy problem for linear hyperbolic sys- 

tems, using convergent expansions in terms of travelling waves. In these series general- 
ized fictions appear as multipliers containing all singularities of the order lower than 

that of the accompanied term. The coefficients of these generalized functions are ob- 

tained from ordinary differential equations. The proof of convergence of such series is 

reduced to the Cauchy-Kowalewska existence theorem. 

Sidorov proposes in a number of his papers [2, 33 a method of obtaining exact solutions 

of certain boundary value probfems for nonlinear hyperbolic equations of second order. 
The solutions are represented by special series in the hodograph space. The convergence 

of these series is proved by Bautin in [4] and the proof can also be reduced to the Cauchy- 

Kowalewska theorem. The present paper adjoins with the works mentioned above. 

2, We seek the solution of the problem in the form of series 

1t.i (X, t) = 5 *~~~)(~} cpk (X, t), i-=1,..., rn, (2.1) 

li- 0 

Let us determine the coefficients of 24 (0 (x). First we expand the coefficients aii (X, 

U), bii (z, U) and ci (2, U) (4 j = 1, . . . . m) into series in the neighborho~ of the 
point U = U". The expansion of oij(r, U) has the form 

Uij(r, U) TTY: Clij(X, vc) + 
.g 

!,- +-I,,=1 

a"+ ... 'I".j'~;~~“i";s;:~l" . ; . y - llmG 

I"' ".. m 

We replace Ui(i = 1, . . . . m) in the above series by the series (2.1) and find from the 
resulting expression the coefficients F (aij, k) accompanying cpk (k > 1) . let us de- 
note by fi, (k) the coefficient accompanying ap” in the expansion in rp of the function 

of the form (uq - u~‘)~Q (k > 1, > 1) . This yields 
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where & is the Kronecker delta. Further, we introduce the notation 

We denote by Frl...l, (k) the coefficient accompanying 

sion in cp of the function’ (ul - ulO)~~ . . . . (u, - u,“)‘~ . 
9” (k > 1) in the expan- 

Then 

k 

Fl, . l,n @) = 2 J’,, (Ad.. . 4,_1 (Am-J Flm (k - A1 - . . . - Am-d 
*A,,..., Am-l=0 

In the above notation the coefficient F (Uij, k) has the form 

k Ia+ +I 

F (%j, k, = 2 

a m,iiP, U=) F,,... I, (I;) 

7rf . . . Slm=l au;. . . au>h! . . . 1,! 

The coefficients bij(s, U), and Ci(Z, 0) can be obtained in the same manner. 

Thus,replacing uj (j = 1, . . . . m) in the i. -th equation of the system (1.1) by the 

series (2.1). we obtain an expression with a series in its left-hand side, and the coeffici- 

ent accompanying (pk in this series can be found from the formula 

Rki = 5 i [(A + 1) ZJ~~+‘)F (cz+~, k - A) + 
j=1 A=0 

&l!A) 
(A + 1) u~+‘)F (bij, k - A) ~pz;I + + F (bij, k - A) 1 + F (CRY k) 

k==O,. . ., co 

The sufficient condition for the series (2.1) to be a formal solution of the system (1.1) 

is, that 
R,i = 0, i = 1, . . . . nt; k = 0, . . . . co (2.2) 

The system (2.2) can be written in the form 

where 
(k + 1) A .,(u(‘+l)) + &(u(k’, t) = 0, k = 0, . . . . 00 

Lk = {(Lk)ih i = 1, . ..( m 

(~k)i = i [kg F (aij, k - A) uiAtl) (A + 1) + 
+=I A=0 

F (b,j, k - A) (A + 1) u~~+~‘(P: + i F (bij, k - A) ‘2 + F (ci k) 
A=0 

A, = {Uij(X, U”) + bij(Z, U”) (pi}, ’ i,i = 1, . . . . ?fI 



(A x is a degenerate matrix, since 9 :I 0 is the characteristic). 
Using the fact that U”(x) is a solution of the system (1. l), we can obtain the follow- 

ing system of equations for determining ui(k) (x) : 

~,~?‘1’ : 0 GL 3) 

L,, (U”‘, x) + 2A,U’*’ = 0 
. . . . . . . . . . . . . . 

L, (UCk’ ) ,x) $ (k + 1) _44,U’k+” = 0 

. . . . . . . . . . . . 1 . . - . . . 

The system (2.3) differs from the equarions obtained by Ludwig in p] in the form of the 

operator Lt. Following Ludwig we solve the system (2.3) by finding the fight (lo (2) ) 

and the left (d (z) ) null-vectors of the matrix A 5S Since det A x =5 0 , these vectors 
are nonzero. Let us assume that 

near the point I&‘. Next we set U(1) = or(~) r (z), where b&z) is a scalar multiplier, 
We determine crt(~) so that the system described by the second line in (2.3) is compati- 

ble, A solution of this system exists. if d (x) &(a,r, z) = 0. Let us write this equation 

in a different form 

adax + G (x) (rl = Q (x) i.Q (2.4) 

Integrating (2.4) we obtain 

o1 f~) = exp i- @t+dtj 1% - 1 exp (- s G (5) d”) Q (x) r&r]-1 

Function U(z) is sought in the form 

U(‘J) == 3% (z) P (z) i_ h, (2) h, (x) = {hsi (2)). 

where h&r) is determined from the system 

.5&J(r), z) + 2 A Jl, = 0 
which is compatible, 

Function rf,(~) is found from the relation d (x)L, (dzr -J- h,, Z) = 0, which can 
be written as 



Method of solution of certain boundary value problems 

~~~/~~ + G,(s) csz = &(x) 

The general solution of this equation can be easily obtained, 
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The functions a, (5) (k > 2) are determined successively in the manner similar to 

that used to obtain as(x), The arbitrary constants yr are determined from the condition 

cx 00 

2 &$h‘ = 2 [skl’,tk + hdt”] 
k=o k=O 

where rl # 0, since det (air + hi i~r’} + 0, i, j = Z, . . . . m. The ~nvergence 
of the series obtained follows from [4], 

The above procedure holds also for the case when the coefficients of the initial sys- 
tem (1.1) depend on t, and for the case of equations with many variables. In these cases 

ok are obtained from the partial differential equations. 

3, Let a gas at rest (U = pa(z) z 0) of density p = so(z) and entropy S= S,(z), 
be situated either outside a spherical (or cylindrical) piston of radius x0 , or to the right 

of a plane piston situated at the distance z. from the coordinate origin. The quantities 

a,(z), l-+$ and S,(x) satisfy the following system of equations: 

(3.1) 

g+t2&=0 
where v and P = P (p, s) are taken in accordance with [5]. 

At the instant t = 0 the piston begins to move into the gas (the piston radius increa- 

ses) at zero initial velocity and nonzero acceleration. The motion of the gas is described 
by the system (3.1). We seek a solution of this system near the point {q~ = 0, t = 0, 
x = ro), where up ::-= 0 is the characteristic corresponding to the solution a,(z), pO(s), 

s,(X). The gas flow satisfies the following boundary conditions: 

u (s, t)] Vp=o = 0, p (z, t) I ‘s=o = aof 

s (5, t)l,+ = So(s), II (5 (d), t) = a3(t)/at 

(x (t) = zs + %lts + **a, EJ > 0) 

(3.2) 

here (5 (t) is the law of motion of the piston. The solution of the problem (3. l), (3.2) 
is sought in the form _ 

p(X, t) = 2 $&+$k(& t), 
k=O 

u@, t, = ~~~~k~~)~k~~? t, 

S(x, t) = ; S,(5)@@t 9 

k=O 

Let us carry out the computations for the case 

P (p, S) = sp2, So = us-a, 2 (t) = 1s + E11” 

In this case the system (3.1) becomes 
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The matrix A z for (3.3) has the form 

uQ(P,’ 0 

- 1 aOcpX’ 
0 --1 R 

The right and left null-vectors are, respectively, 

The following relations yield ai(z), pt(t) and si(Z) : 

- 2s, + pls~~p,’ -I- -g p1 = 0 

In accordance with Sect. 2 we assume that 

ai -7 al(z) 2-‘i2n0”2 (z), PI (3) -= o1 (X), Si(Z) =: 0 

We find at(z) from the equation 

251’2an’/* 851 aZ _f-_ :ja:, ‘z-’ ‘G, 2 $_ j2”’ + a,“z + 2-V’&“!, %\j d1 ~__ 0 

which on integration gives 

c1 (3.) -_z a;“’ (,r) ,,.-u;:! Fr, ~+ “/4 1 a”;‘(r) J;-vlt &j-i 

Let a,(s) 7 c1” const and J: (t) = 50 i_ g1t2. Then 

(Y =o, 1) 

(v = 0, 1) 

r, z: - 114 (2so_lj1-1 + 3a, In 50) cv -= 2) 

The position z*at which the infinite gradients appear is determined by equating to zero 
the expressions for oi(s) contained within the round brackets, and the time t*(t* > 0) 
of their appearance is found from the equation 

‘F(,Z.Y, t) ~-~ 0 
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1n the case under consideration (a piston moving into the gas, & > 0) the infinite 

gradients always appear. If the initial speed of sound in the gas is equal to unity, we 
obtain t* = =/aw, w = 2E, (v-z 0) 

t* = [6 + &] &- (v= I) 

For this case analogous formulas are obtained in [33. 

Let now p -= a, (z) and ,S = So (z). Then we have 

The sufficient condition for the appearance of infinite gradients is 

s 44 (x) ,yv’2 ax -> oc ) x --z 2Q 

Let ‘V --_ 1, a,, (z) = x2 and z (t) .= 1 j- 2o/3 P. We obtain 

or (x) =- 10.75 .x (0.6-0.5 zn_)P, x* = 1.1, t" := 0.074 

p (x: t) = z2 [1 + 8?'* /' 3f0.5 z2 - 0.6)-l(--t- 8-'/s -j-x%-'~$+... 

The expressions for os (t) and h, (z) are bulky and therefore are omitted, u (5, t) 

and S (z, t) have the same form as before. 
Figure 1 depicts the results of numerical com- 

putations for the density ,p (z, t) using three 
terms of the expansion for t = 0.02 and 

t = 0.04, corresponding to the curves 1 and 2. 

The curve 3 gives the initial density dis~ibution 
and curve 4 defines the position of the piston, 

The maximum values of p and the correspond- 

t.02 f.04 
ing values of 2 are as follows: (1.18, 1.0025) 

I 

Fig. 1 
and (1.372, 1.011). 

The author thanks A. F,Sidorov for the help and guidance, 
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